Abstract:We propose PhysicsFC, a method for controlling physically simulated football player characters to perform a variety of football skills--such as dribbling, trapping, moving, and kicking--based on user input, while seamlessly transitioning between these skills. Our skill-specific policies, which generate latent variables for each football skill, are trained using an existing physics-based motion embedding model that serves as a foundation for reproducing football motions. Key features include a tailored reward design for the Dribble policy, a two-phase reward structure combined with projectile dynamics-based initialization for the Trap policy, and a Data-Embedded Goal-Conditioned Latent Guidance (DEGCL) method for the Move policy. Using the trained skill policies, the proposed football player finite state machine (PhysicsFC FSM) allows users to interactively control the character. To ensure smooth and agile transitions between skill policies, as defined in the FSM, we introduce the Skill Transition-Based Initialization (STI), which is applied during the training of each skill policy. We develop several interactive scenarios to showcase PhysicsFC's effectiveness, including competitive trapping and dribbling, give-and-go plays, and 11v11 football games, where multiple PhysicsFC agents produce natural and controllable physics-based football player behaviors. Quantitative evaluations further validate the performance of individual skill policies and the transitions between them, using the presented metrics and experimental designs.
Abstract:This paper investigates the knowledge of language models from the perspective of Bayesian epistemology. We explore how language models adjust their confidence and responses when presented with evidence with varying levels of informativeness and reliability. To study these properties, we create a dataset with various types of evidence and analyze language models' responses and confidence using verbalized confidence, token probability, and sampling. We observed that language models do not consistently follow Bayesian epistemology: language models follow the Bayesian confirmation assumption well with true evidence but fail to adhere to other Bayesian assumptions when encountering different evidence types. Also, we demonstrated that language models can exhibit high confidence when given strong evidence, but this does not always guarantee high accuracy. Our analysis also reveals that language models are biased toward golden evidence and show varying performance depending on the degree of irrelevance, helping explain why they deviate from Bayesian assumptions.
Abstract:We study model confidence calibration in class-incremental learning, where models learn from sequential tasks with different class sets. While existing works primarily focus on accuracy, maintaining calibrated confidence has been largely overlooked. Unfortunately, most post-hoc calibration techniques are not designed to work with the limited memories of old-task data typical in class-incremental learning, as retaining a sufficient validation set would be impractical. Thus, we propose T-CIL, a novel temperature scaling approach for class-incremental learning without a validation set for old tasks, that leverages adversarially perturbed exemplars from memory. Directly using exemplars is inadequate for temperature optimization, since they are already used for training. The key idea of T-CIL is to perturb exemplars more strongly for old tasks than for the new task by adjusting the perturbation direction based on feature distance, with the single magnitude determined using the new-task validation set. This strategy makes the perturbation magnitude computed from the new task also applicable to old tasks, leveraging the tendency that the accuracy of old tasks is lower than that of the new task. We empirically show that T-CIL significantly outperforms various baselines in terms of calibration on real datasets and can be integrated with existing class-incremental learning techniques with minimal impact on accuracy.
Abstract:Modern Large Language Model serving system batches multiple requests to achieve high throughput, while batching attention operations is challenging, rendering memory bandwidth a critical bottleneck. The community relies on high-end GPUs with multiple high-bandwidth memory channels. Unfortunately, HBM's high bandwidth often comes at the expense of limited memory capacity, which reduces core utilization and increases costs. Recent advancements enabling longer contexts for LLMs have substantially increased the key-value cache size, further intensifying the pressures on memory capacity. The literature has explored KV cache quantization techniques, which commonly use low bitwidth for most values, selectively using higher bitwidth for outlier values. While this approach helps achieve high accuracy and low bitwidth simultaneously, it comes with the limitation that cost for online outlier detection is excessively high, negating the advantages. We propose Oaken, an acceleration solution that achieves high accuracy and high performance simultaneously through co-designing algorithm and hardware. To effectively find a sweet spot in the accuracy-performance trade-off space of KV cache quantization, Oaken employs an online-offline hybrid approach, setting outlier thresholds offline, which are then used to determine the quantization scale online. To translate the proposed algorithmic technique into tangible performance gains, Oaken also comes with custom quantization engines and memory management units that can be integrated with any LLM accelerators. We built an Oaken accelerator on top of an LLM accelerator, LPU, and conducted a comprehensive evaluation. Our experiments show that for a batch size of 256, Oaken achieves up to 1.58x throughput improvement over NVIDIA A100 GPU, incurring a minimal accuracy loss of only 0.54\% on average, compared to state-of-the-art KV cache quantization techniques.
Abstract:Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers, which can be populated scalably by distributed off-policy actors to enhance exploration as compute increases. We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA), a massively scalable LLM RL system. In contrast to existing approaches, TBA uses a larger fraction of compute on search, constantly generating off-policy data for a central replay buffer. A training node simultaneously samples data from this buffer based on reward or recency to update the policy using Trajectory Balance (TB), a diversity-seeking RL objective introduced for GFlowNets. TBA offers three key advantages: (1) decoupled training and search, speeding up training wall-clock time by 4x or more; (2) improved diversity through large-scale off-policy sampling; and (3) scalable search for sparse reward settings. On mathematical reasoning, preference-tuning, and automated red-teaming (diverse and representative post-training tasks), TBA produces speed and performance improvements over strong baselines.
Abstract:Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
Abstract:This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (RL) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.
Abstract:In this paper, we investigate a novel approach for Target Speech Extraction (TSE), which relies solely on textual context to extract the target speech. We refer to this task as Contextual Speech Extraction (CSE). Unlike traditional TSE methods that rely on pre-recorded enrollment utterances, video of the target speaker's face, spatial information, or other explicit cues to identify the target stream, our proposed method requires only a few turns of previous dialogue (or monologue) history. This approach is naturally feasible in mobile messaging environments where voice recordings are typically preceded by textual dialogue that can be leveraged implicitly. We present three CSE models and analyze their performances on three datasets. Through our experiments, we demonstrate that even when the model relies purely on dialogue history, it can achieve over 90 % accuracy in identifying the correct target stream with only two previous dialogue turns. Furthermore, we show that by leveraging both textual context and enrollment utterances as cues during training, we further enhance our model's flexibility and effectiveness, allowing us to use either cue during inference, or combine both for improved performance. Samples and code available on https://miraodasilva.github.io/cse-project-page .
Abstract:Diverse usage patterns induce complex and variable aging behaviors in lithium-ion batteries, complicating accurate health diagnosis and prognosis. Separate diagnostic cycles are often used to untangle the battery's current state of health from prior complex aging patterns. However, these same diagnostic cycles alter the battery's degradation trajectory, are time-intensive, and cannot be practically performed in onboard applications. In this work, we leverage portions of operational measurements in combination with an interpretable machine learning model to enable rapid, onboard battery health diagnostics and prognostics without offline diagnostic testing and the requirement of historical data. We integrate mechanistic constraints within an encoder-decoder architecture to extract electrode states in a physically interpretable latent space and enable improved reconstruction of the degradation path. The health diagnosis model framework can be flexibly applied across diverse application interests with slight fine-tuning. We demonstrate the versatility of this model framework by applying it to three battery-cycling datasets consisting of 422 cells under different operating conditions, highlighting the utility of an interpretable diagnostic-free, onboard battery diagnosis and prognosis model.
Abstract:Audio-Visual Speech Recognition (AVSR) leverages both audio and visual modalities to enhance speech recognition robustness, particularly in noisy environments. Recent advancements in Large Language Models (LLMs) have demonstrated their effectiveness in speech recognition, including AVSR. However, due to the significant length of speech representations, direct integration with LLMs imposes substantial computational costs. Prior approaches address this by compressing speech representations before feeding them into LLMs. However, higher compression ratios often lead to performance degradation, necessitating a trade-off between computational efficiency and recognition accuracy. To address this challenge, we propose Llama-MTSK, the first Matryoshka-based Multimodal LLM for AVSR, which enables flexible adaptation of the audio-visual token allocation based on specific computational constraints while preserving high performance. Our approach, inspired by Matryoshka Representation Learning, encodes audio-visual representations at multiple granularities within a single model, eliminating the need to train separate models for different compression levels. Moreover, to efficiently fine-tune the LLM, we introduce three LoRA-based Matryoshka strategies using global and scale-specific LoRA modules. Extensive evaluations on the two largest AVSR datasets demonstrate that Llama-MTSK achieves state-of-the-art results, matching or surpassing models trained independently at fixed compression levels.